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1 Introduction

This final report summarizes the research performed for the Office of Naval
Research under Contract N00014-90-C-0086 on the topic “Object-Oriented
Design and Specification.” The project began on 1 January 1990 and
ended on 31 December 1994. Dr. José Meseguer was the project leader.
Drs. Patrick Lincoln, and Narciso Marti-Oliet and Mr. Timothy Winkler
also worked on the project.

Early in the project, an important breakthrough took place with the
discovery of rewriting logic, which was then further developed [25, 23, 26].
Rewriting logic has proved to be a very flexible multiparadigm logic [27] of
great simplicity allowing the unification of equational programming, Horn
logic programming, object-oriented programming, and concurrent program-
ming. In particular, a very simple semantics can be given in rewriting
logic to concurrent object-oriented programming [24, 29, 28] and to object-
oriented databases [33]. This is particularly encouraging given that concur-
rent object-oriented programming and object-oriented databases are disci-
plines generally considered to lack a precise semantics.

Encouraged by these results, a preliminary language design for Maude,
a wide-spectrum multiparadigm language based on rewriting logic and con-
taining a subset called Simple Maude that can be efficiently compiled onto a
wide variety of parallel machines has been developed (34, 27, 30, 28, 17]; and
very encouraging experience about its suitability for specifying concurrent
systems, Al problems, programming languages, and logics has been gath-
ered [30, 20, 21, 32, 22]. In addition, some initial progress has been made on
transformation and compilation techniques for the Simple Maude parallel

. programming sublanguage [17, 18].

Maude contains the equational language OBJ as its functional sublan-
guage. The OBJ3 system and its underlying theory have been developed ion For
with the support of the Office of Naval Research. OBJ3 is used throughout :rjs1 C
the world in more than 170 universities and research laboratories. Progress .3 a
has been made in further developing OBJ3’s underlying abstract data type .xced O
theory [35, 31], and in improving the OBJ3 user manual [8]. "
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Our work on rewriting logic and Maude during this project has stim-
ulated their use by a growing community of international researchers in a
variety of ways. For example, C. Kirchner, H. Kirchner, and Vittek are
using it as a foundation for their ELAN language and applying it to the
specification of computational systems [9, 39, 10]; Futatsugi has adopted it
as the semantic basis of his Cafe language [6]; Denker and Gogolla have used
Maude to give semantics to the TROLL light object-oriented language [5];
Viry has developed useful program transformation techniques for rewrite
theories using completion methods [38]; Laneve and Montanari have shown
how the heavy notation of the residual calculus can be replaced by a simpler
semantic account using rewriting logic [11, 12]; Corradini, Gadducci, and
Montanari have studied its relationships with other categorical models and
with event structures [4], as well as the topic of infinite rewritings [3]; Levy
and Agusti are applying it to their work on automated deduction [16, 14, 15];
Reichel has found it useful in his final coalgebra semantics for objects [36];
Lechner, Lengauer, and Wirsing have carried out an ambitious case study
investigating the expressiveness of rewriting logic and Maude for object-
oriented specification and have explored refinement concepts [13]; Talcott is
using rewriting logic to give a concurrent semantics to actor systems [37];
and applications to Petri net algebraic specification have been developed by
Battiston, Crespi, De Cindio, and Mauri [1], and by Bettaz and Maouche

2]

2 Accomplishments

Under contract N00014-90-0086, we have accomplished the following:

Rewriting Logic. The logical basis on which the main ideas developed in
the project are based is provided by rewriting logic [25, 23, 26], a logic
for reasoning correctly about concurrent systems having states, and
evolving by means of transitions. The signature of a rewrite theory
describes a particular structure for the states of a system—e.g., mul-
tiset, binary tree, etc.—so that its states can be distributed according
to such a structure. The rewrite rules in the theory describe which
elementary local transitions are possible in the distributed state by
concurrent local transformations. The rules of rewriting logic allow
us to reason correctly about which general concurrent transitions are
possible in a system satisfying such a description. Thus, computation-
ally, each rewriting step is a parallel local transition in a concurrent




system.

Alternatively, however, we can adopt a logical viewpoint instead, and
regard the rules of rewriting logic as metarules for correct deduction in
a logical system. Logically, each rewriting step is a logical entailment
in a formal system. This second viewpoint is particularly fruitful when
using rewriting logic as a logical framework [20, 21].

The computational and the logical viewpoints under which rewriting
logic can be interpreted can be summarized in the following diagram
of correspondences:

State +— Term « Proposition
Transition +— Rewriting — Deduction
Distributed Structure « Algebraic Structure <« Propositional Structure

The last row of equivalences is actually quite important. Roughly
speaking, it expresses the fact that a state can be transformed in a
concurrent way only if it is nonatomic, that is, if it is composed out
of smaller state components that can be changed independently. In
rewriting logic this composition of a concurrent state is formalized by
the operations of the signature ¥ of the rewrite theory R that ax-
iomatizes the system. From the logical point of view, such operations
can naturally be regarded as user-definable propositional connectives
stating the particular structure that a given state has. The papers
[26, 22] give further discussion and examples illustrating the above
correspondences between computational and logical concepts.

Semantics of Concurrent Objects and of Object-Oriented Databases.
The naturalness with which concurrent object-oriented programming
can be expressed in rewriting logic and can be unified with equational
programming is particularly encouraging [24, 29, 28]. In a similar way,
object-oriented databases can be given a logical semantics in rewriting
logic {33]. In this way, the serious need for semantic foundations in
these two areas has been satisfactorily met.

In addition, serious difficulties long recognized by many authors in in-
tegrating concurrency and inheritiance in object-oriented languages—
the so-called “inheritance anomaly” problem—have been completely
resolved using rewriting logic [29]; and equational functional program-
ming is cleanly integrated with concurrent object-oriented program-




ming thanks to an embedding of equational logic within rewriting logic
[27].

Preliminary Design of Maude. Rewriting logic is a very simple mul-
tiparadigm logic [27] on which to base a declarative wide-spectrum
language unifying equational programming, Horn logic programming,
object-oriented programming, and concurrent programming. Maude
is our preliminary design for such a language [34, 27, 30, 28, 17]. In
addition to system modules that are theories in rewriting logic, Maude
provides explicit language support for functional modules—essentially
identical to OBJ3 modules—and for object-oriented modules. Maude
can be realized as an interpreter that executes such modules. We can
view the modules executable in Maude as a commonly used subset
of rewriting logic; however, nonexecutable specifications in arbitrary,
finitely presented rewriting logic theories are possible within the lan-
guage using theories, that can specify modules and can give formal
requirements to the parameters of parameterized modules. In this
way, a high-reuse “parameterized programming” methodology similar
to that of OBJ but enjoying additional properties is achieved.

Besides the nonexecutable specification, executable specification, and
rapid prototyping uses supported by Maude, machine-independent
declarative parallel programming is supported in the Simple Maude
subset, which can be efficiently compiled onto a wide variety of parallel
machines. Program transformation techniques can then allow moving
from nonexecutable specifications to executable ones, and from these
to efficient parallel programs [17].

Specification Uses of Maude. Regarding the specificational uses of rewrit-
ing logic, an obvious question to ask is how general and natural rewrit-
ing logic is as a semantic framework in which to express different lan-
guages and models of computation. Our experience in this regard is
quite encouraging. In several papers [26, 20, 28] we have been able to
show that a wide variety of models of computation, including concur-
rent ones, can be naturally and directly expressed as rewrite theories in
rewriting logic without any encoding or artificiality. As a consequence,
models hitherto quite distant from each other can be naturally uni-
fied and interrelated within a common framework. This is particularly
useful in the field of concurrency, where alternative models proposed
as “basic” by different authors differ greatly, and also in attempts at




designing multiparadigm languages such as those combining functional
and concurrent object-oriented programming.

In particular, we have shown that models and languages such as

e CCS,

e Petri nets,

e Actors,

e the UNITY language,

e the lambda calculus,

e equational languages, and

e concurrent object-oriented programming

can all be naturally expressed in rewriting logic. In addition, we have
shown in [22] that rewriting logic has very good properties as a logic of
change that avoids the frame problem, and that subsumes other logics
previously proposed for this purpose.

In addition to all the uses already discussed, rewriting logic has also
very good properties for specifying other logics in it, that is, as a logi-
cal framework [20, 21, 32]. Indeed, rewriting logic seems to have great
flexibility to represent in a natural way many other logics, widely dif-
ferent in nature, including equational, Horn, and linear logics, and
any sequent calculus presentation of a logic under extremely general
assumptions about such a sequent presentation; moreover, quantifiers
can also be treated without problems [20]. More experience in repre-
senting other logics is certainly needed, but we are encouraged by the
naturalness and directness—often preserving the original syntax and
rules—with which the logics that we have studied can be represented.

In summary, our experience with rewriting logic as a logical framework
suggests that it has very good properties for this purpose in terms of:

e Scope. We actually conjecture that any finitely presented logic
(for an adequate formal definition of “finitely presented logic” as
a logic of practical interest) has a conservative representation in
rewriting logic.

e Representational adequacy. The capacity for axiomatizing
the syntactic constructs and structural properties of a logic as an
order-sorted algebraic data type, as well as the rules of the logic




as rewrite rules, seems to make the “distance” between the logic
and its representation negligible or non-existent in many cases.

Up to now, we have obtained faithful representations for:

e equational logic,

Horn logic with equality,

linear logic,

logics with quantifiers, such as first-order classical and linear log-
ics,

any logic describable with a sequent calculus, including first-order
classical, modal, linear, and intuitionistic logics.

Parallel Programming in Maude. We can usefully distinguish three par-
allel computing paradigms that in combination are sufficient for ex-
pressing with naturalness most parallel computing applications. These
paradigms are:

1. Parallel Symbolic Computing. Functional, logic program-
ming, and theorem-proving applications are typical of this paradigm.

2. Highly Regular Data-Parallel Computing. Many scientific
computing applications, as well as cellular automata and systolic
algorithms, are typical of this paradigm.

3. Concurrent Object-Oriented Computing. Many discrete
event simulations, and many distributed AI and database appli-
cations can be naturally expressed and parallelized in this way.

A carefully chosen subset of rewriting logic gives rise to the multi-
paradigm parallel programming language Simple Maude, that is effi-
ciently implementable on a wide range of parallel machines—including
MIMD, SIMD, and SIMD/MIMD machines—and that can directly
support the three paradigms of symbolic, object-oriented, and highly
regular parallel computing. Specifically, Simple Maude supports:

e Parallel Symbolic Computing
by Term Rewriting

o Highly Regular Data-Parallel Computing
by Graph Rewriting




e Concurrent Object-Oriented Computing
by Object-Oriented Rewriting

Much more research is needed, but we have already carried out a pre-
liminary language design for Simple Maude and have developed pro-
gram transformation techniques bringing rewriting logic specifications
into Simple Maude and optimizing Simple Maude programs [17]. In
addition, compilation techniques for SIMD and MIMD/SIMD imple-
mentations and a prototype Simple Maude compiler for the Rewrite
Rule Machine (RRM) [19] have also been developed [18].

Abstract Data Types and OBJ3. Maude contains the equational lan-

guage OBJ as its functional sublanguage. Progress has also been
made on theoretical and practical aspects of OBJ3. Important se-
mantic properties of order-sorted abstract data types that make them
strictly more expressive than many-sorted abstract data types have
been studied in [31]; and computability properties of abstract data
types clarifying their specificational power have been investigated in
[35]. Several revisions and extensions of the OBJ3 user’s manual [7]—
that is over 100 pages long and contains an overview of OBJ3’s seman-
tics, the OBJ3 systems, its parameterized programming methodology,
and many examples—have also been made; and we have continued
distributing the system to universities and research laboratories world-
wide.
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